3.385 \(\int \sec ^4(c+d x) (a+b \sin (c+d x)) \, dx\)

Optimal. Leaf size=44 \[ \frac{a \tan ^3(c+d x)}{3 d}+\frac{a \tan (c+d x)}{d}+\frac{b \sec ^3(c+d x)}{3 d} \]

[Out]

(b*Sec[c + d*x]^3)/(3*d) + (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.035826, antiderivative size = 44, normalized size of antiderivative = 1., number of steps used = 3, number of rules used = 2, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.105, Rules used = {2669, 3767} \[ \frac{a \tan ^3(c+d x)}{3 d}+\frac{a \tan (c+d x)}{d}+\frac{b \sec ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^4*(a + b*Sin[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^3)/(3*d) + (a*Tan[c + d*x])/d + (a*Tan[c + d*x]^3)/(3*d)

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rubi steps

\begin{align*} \int \sec ^4(c+d x) (a+b \sin (c+d x)) \, dx &=\frac{b \sec ^3(c+d x)}{3 d}+a \int \sec ^4(c+d x) \, dx\\ &=\frac{b \sec ^3(c+d x)}{3 d}-\frac{a \operatorname{Subst}\left (\int \left (1+x^2\right ) \, dx,x,-\tan (c+d x)\right )}{d}\\ &=\frac{b \sec ^3(c+d x)}{3 d}+\frac{a \tan (c+d x)}{d}+\frac{a \tan ^3(c+d x)}{3 d}\\ \end{align*}

Mathematica [A]  time = 0.0793873, size = 41, normalized size = 0.93 \[ \frac{a \left (\frac{1}{3} \tan ^3(c+d x)+\tan (c+d x)\right )}{d}+\frac{b \sec ^3(c+d x)}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^4*(a + b*Sin[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^3)/(3*d) + (a*(Tan[c + d*x] + Tan[c + d*x]^3/3))/d

________________________________________________________________________________________

Maple [A]  time = 0.033, size = 38, normalized size = 0.9 \begin{align*}{\frac{1}{d} \left ( -a \left ( -{\frac{2}{3}}-{\frac{ \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3}} \right ) \tan \left ( dx+c \right ) +{\frac{b}{3\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^4*(a+b*sin(d*x+c)),x)

[Out]

1/d*(-a*(-2/3-1/3*sec(d*x+c)^2)*tan(d*x+c)+1/3*b/cos(d*x+c)^3)

________________________________________________________________________________________

Maxima [A]  time = 0.967181, size = 47, normalized size = 1.07 \begin{align*} \frac{{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} a + \frac{b}{\cos \left (d x + c\right )^{3}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="maxima")

[Out]

1/3*((tan(d*x + c)^3 + 3*tan(d*x + c))*a + b/cos(d*x + c)^3)/d

________________________________________________________________________________________

Fricas [A]  time = 1.98761, size = 92, normalized size = 2.09 \begin{align*} \frac{{\left (2 \, a \cos \left (d x + c\right )^{2} + a\right )} \sin \left (d x + c\right ) + b}{3 \, d \cos \left (d x + c\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="fricas")

[Out]

1/3*((2*a*cos(d*x + c)^2 + a)*sin(d*x + c) + b)/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**4*(a+b*sin(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.0921, size = 103, normalized size = 2.34 \begin{align*} -\frac{2 \,{\left (3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 3 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 2 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + b\right )}}{3 \,{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^4*(a+b*sin(d*x+c)),x, algorithm="giac")

[Out]

-2/3*(3*a*tan(1/2*d*x + 1/2*c)^5 + 3*b*tan(1/2*d*x + 1/2*c)^4 - 2*a*tan(1/2*d*x + 1/2*c)^3 + 3*a*tan(1/2*d*x +
 1/2*c) + b)/((tan(1/2*d*x + 1/2*c)^2 - 1)^3*d)